84 research outputs found

    Chatter milling modeling of active magnetic bearing spindle in high-speed domain

    Get PDF
    A new dynamical modeling of Active Magnetic Bearing Spindle (AMBS) to identify machining stability of High Speed Milling (HSM) is presented. This original modeling includes all the minimum required parameters for stability analysis of AMBS machining. The stability diagram generated with this new model is compared to classical stability lobes theory. Thus, behavior’s specificities are highlighted, especially the major importance of forced vibrations for AMBS. Then a sensitivity study shows impacts of several parameters of the controller. For example, gain adjustment shows improvements on stability. Side milling ramp test is used to quickly evaluate the stability. Finally, the simulation results are then validated by HSM cutting tests on a 5 axis machining center with AMBS

    Chatter Control by Spindle Speed Variation in High-Speed Milling

    Get PDF
    High-speed milling operations are often limited by regenerative vibrations. The aim of this paper is to analyze the effect of spindle speed variation on machine tool chatter in high-speed milling. The stability analysis of triangular and sinusoidal shape variations is made numerically with the semi-discretization method. Parametric studies show also the influence of the frequency and amplitude variation parameters. This modeling is validated experimentally by variable spindle speed cutting tests with a triangular shape. Stable and unstable tests are analyzed in term of amplitude vibration and surface roughness degradation. This work reveals that stability must be considered at period variation scale. It is also shown that spindle speed variation can be efficiently used to suppress chatter in the flip lobe area

    Simulation of low rigidity part machining applied to thin-walled structures

    Get PDF
    The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium work- pieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into account all the phenomena involved in the dynamics of cutting. The system has been modelled using several simulation techni- ques. On the one hand, the milling process was modelled using a dynamic mechanistic model, with time domain simulation. On the other hand, the dynamic parameters of the system were obtained step by step by finite element analysis; thus the variation due to metal removal and the cutting edge position has been accurately taken into account. The results of the simulations were compared to those of the experiments; the discussion is based on the analysis of the cutting forces, the amplitude and the frequency of the vibrations evaluating the presence of chatter. The specific difficulties to perfect simulation of thin-walled workpiece chatter have been finely analysed

    Influence d'une vitesse de rotation variable sur les vibrations d'usinage en UGV

    Get PDF
    Les opérations de fraisage à grande vitesse sont couramment limitées par les vibrations régénératives. Dans cet article, nous allons étudier une solution de réduction du phénomène de broutement, basée sur la variation de la vitesse de rotation de l’outil. Afin de quantifier les gains de productivité, deux modélisations différentes du fraisage dynamique ont été adaptées et confrontées : la simulation temporelle et la semi-discrétisation. La comparaison de ces deux méthodes a montré une bonne cohérence des résultats aussi bien à vitesse constante qu’à vitesse variable. Ces deux modélisations ont été validées expérimentalement à vitesse constante et variable. Les essais d’usinage à vitesse variable ont permis de mettre en évidence la différence entre la stabilité théorique et expérimentale

    Suppression of period doubling chetter in high-speed milling by spindle speed variation

    Get PDF
    Spindle speed variation is a well known technique to suppress regenerative machine tool vibra- tions, but it is usually considered to be effective only for low spindle speeds. In the current paper, spindle speed variation is applied to the high speed milling process, at the spindle speeds where the constant speed cutting results in period doubling chatter. The stability analysis of triangular and sinusoidal shape variations is made numerically with the semi-discretization method. It is shown that the milling process can be stabilized by increasing the amplitude of the spindle speed variation, while the frequency of the variation has no significant effect on the dynamic behaviour. The results are validated by experiments. Based on the analysis of the machined workpieces, it is shown that the surface roughness can also be decreased by the spindle speed variation technique

    Dynamical modeling of spindle with active magnetic bearing for milling process

    Get PDF
    A dynamical modeling of spindle with Active Magnetic Bearing (AMB) is presented. All the required parameters are included in the model for stability analysis. The original map of stability is generated by Time Domain Simulation. The major importance of forced vibrations is highlighted for a spindle with AMB. Milling test are used to quickly evaluate the stability. Finally, the simulation results are then validated by cutting tests on a 5 axis machining center with AMB

    Chatter in interrupted turning with geometrical defects: an industrial case study

    Get PDF
    In this paper, machine tool chatter arising in an interrupted turning process is investigated in a strong industrial context with a complex flexible part. A detailed analysis of the real cutting process is performed with special respect to the geometrical defects of the part in order to highlight the source of machine tool vibrations. The analysis is completed by simple models to estimate the forced vibrations in interrupted turning, the gyroscopic effect, and the mode coupling using a new simplified formulation. Then, a new dynamical model with interrupted cutting and geometrical inaccuracies—runout and orientation of eccentricity—is presented. Stability analysis of this model is performed by the semi-discretization method, an improved technique for analyzing delay-differential equations. The use of all these models on a given machining configuration allows comparing several vibration mechanisms. Thus, behavior’s specificities are highlighted, especially the influence of eccentricity runout on stability. A sensitivity analysis shows the effect of the value and the orientation of the geometrical defects for low speed conditions. Then this result are extrapolated to high-speed conditions to look for possible new stable cutting conditions and shows a period doubling flip instability, never described before in turning operations. The main focus of this paper is developing and exploring a stability model for interrupted cutting in turning with geometrical defects. The complexity of the industrial context led to methodically compare different chatter and vibration mechanisms; this approach can be generalized to other industrial contexts

    Residual stresses in a ceramic-metal composite

    Get PDF
    The work of this study concerns the fine modelling of the thermomechanical and metallurgical behavior of interface ceramic-metal in order to determine the residual mechanical state of the structures during brazing process. For these cases, difficulties mainly arise in the modelling of the solid-solid phase transformations as well as in the modelling of the mechanical behavior of the multiphasic material. Within an original theoretical framework generalized standard materials with internal constraints we proposed models for the behavior of multiphasic material. The design of joints in engineering structures and the optimisation of the industrial brazing process require determining and analysing such a phenomenon. In this way, the present work aims at predicting the thermally induced stresses (localisation and level) through numerical simulations and then, at defining the main parameters which influence their development

    Toolpath dependent stability lobes for the milling of thin-walled parts

    Get PDF
    The milling of thin-walled parts can become a seriously complex problem because the parts have variable dynamics. Firstly, the dynamics evolution of the part has been calculated through Finite Element Method (FEM) analysis. Then, the 3D stability lobes have been calculated for the thin walls and the thin floor. Finally, several milling tests have been performed in order to validate the predictions made by the model

    Stéréo-corrélation d'image : application aux vibrations d'une paroi mince en usinage

    Get PDF
    La réalisation de pièces d'aubage ou de certaines structures aéronautiques, présentant des parois minces, engendre généralement des vibrations d'usinage. Ces phénomènes dégradent l’état de surface obtenu et réduisent la durée de vie d'outil ou de broche. Une démarche expérimentale visant à préciser les vibrations de paroi mince pendant l’usinage est présentée ici. Des mesures de champs par stéréo-corrélation d’image associées à des mesures fréquentielles ponctuelles par accéléromètres, mettent en évidence le comportement de la paroi en fraisage radial
    corecore